There are inconsistencies in the nomenclature used for naming conotoxins, but in general they tend to be named as follows. The initial categorization of the conopeptides is based on the pharmacological family they belong too and this is denoted by a Greek letter at the beginning of the peptide name. A letter or two is then used to designate the Conus species from which the peptide was isolated, followed by a Roman numeral specifying the disulfide bond connectivity. Conotoxins are also grouped into superfamilies, defined by their signal sequence in the initial prepropeptide and the disulfide framework.
Logo representation of the first 25 amino acids from conotoxin precursors belonging to superfamily A as of September 2007.
For example, vc1a can be decoded to yield the following information: it belongs to the alpha pharmacological family, has be been isolated from Conus victoriae, has a type 1 disulfide framework (superfamily A) and was the first peptide to be discovered in this category. Please see table one below for an example representations of the different superfamily disulfide bond scaffolds.
Examples of cystine frameworks for the major super families of conotoxins.
Please note: In the figure of conotoxin cystine frameworks the A- and T- superfamily share a similar framework but differ in the disulfide linkage pattern. The A-superfamily disulfide pattern is also referred to as globular fold whereas the T-superfamily pattern is the ribbon isoform. (When synthesizing peptides without distinct protective groups for the cysteines both isoforms may be obtained.) The M-, O- and P-superfamily share the same disulfide linkage patterns but differ in their cystine framework, i.e. the spacing between the cysteine residues.
For each superfamily, subtypes may occur which differ in the number of residues between the cysteines, for example the αA 4/7 subtype has four residues after the second cysteine (CysII) and seven residues after the third cysteine (CysIII). In the T-superfamily spacing between CysIII and CysIV may be two residues as in MrIA (type III framework) or no residues as in Lt5a (type V framework). A more detailed overview on the conotoxin frameworks can be found here.
Conotoxins can also have N- and C-terminal extensions like the 4/7 αA-conotoxin GID which has a N-terminal extension of four amino acids.
Framework | Cystine pattern | # cysteines | Connectivity | Reference |
---|---|---|---|---|
XXXIII | C-C-C-C-C-C-C-C-C-C-C-C | 12 | Pardos-Blas,J.R. et al. (2019) Marine drugs 17:453 | |
XVI | C-C-CC | 4 | Pi,C. et al. (2006) Genomics 88:809-819 | |
I | CC-C-C | 4 | I-III, II-IV | Gray,W.R. et al. (1981) J. Biol. Chem. 256:4734-4740 |
V | CC-CC | 4 | I-III, II-IV | Walker,C.S. et al. (1999) J. Biol. Chem. 274:30664-30671 |
X | CC-C.[PO]C | 4 | I-IV, II-III | Balaji,R.A. et al. (2000) J. Biol. Chem. 275:39516-39522 |
XIV | C-C-C-C | 4 | I-III, II-IV | Moller,C. et al. (2005) Biochemistry 44:15986-15996 |
III | CC-C-C-CC | 6 | Sato,S. et al. (1983) FEBS Lett. 155:277-280 | |
VI/VII | C-C-CC-C-C | 6 | I-IV, II-V, III-VI | Olivera,B.M. et al. (1984) Biochemistry 23:5087-5090 |
IX | C-C-C-C-C-C | 6 | I-IV, II-V, III-VI | Lirazan,M.B. et al. (2000) Biochemistry 39:1583-1588 |
XI | C-C-CC-CC-C-C | 8 | I-IV, II-VI, III-VII, V-VIII | Jimenez,E.C. et al. (2003) J. Neurochem. 85:610-621 |
VIII | C-C-C-C-C-C-C-C-C-C | 10 | England,L.J. et al. (1998) Science 281:575-578 | |
XVII | C-C-CC-C-CC-C | 8 | Yuan,D.D. et al. (2008) Peptides 29:1521-1525 | |
II | CCC-C-C-C | 6 | Ramilo,C. et al. (1992) Biochemistry 31:9919-9926 | |
XIII | C-C-C-CC-C-C-C | 8 | Aguilar,M.B. et al. (2005) Biochemistry 44:11130-11136 | |
XV | C-C-CC-C-C-C-C | 8 | Peng,C. et al. (2008) Peptides 29:985-991 | |
XII | C-C-C-C-CC-C-C | 8 | Brown,M.A. et al. (2005) Biochemistry 44:9150-9159 | |
XXVII | C-C-C-CCC-C-C | 8 | Jin,A.H. et al. (2015) Proc. Biol. Sci. 282 | |
XVIII | C-C-CC-CC | 6 | Chen,J.S. et al. (1999) J Nat Toxins 8:341-349 | |
XIX | C-C-C-CCC-C-C-C-C | 10 | Chen,P. et al. (2008) Toxicon 52:139-145 | |
XX | C-CC-C-CC-C-C-C-C | 10 | Loughnan,M.L. et al. (2009) Biochemistry 48:3717-3729 | |
XXII | C-C-C-C-C-C-C-C | 8 | Elliger,C.A. et al. (2011) Toxicon 57:311-322 | |
XXI | CC-C-C-C-CC-C-C-C | 10 | Möller,C. and Marí,F. (2011) Biopolymers 96:158-165 | |
XXIII | C-C-C-CC-C | 6 | Ye,M. et al. (2012) J Biol Chem 287:14973-14983 | |
XXIV | C-CC-C | 4 | Luo,S. et al. (2013) PLoS ONE 8 | |
XXV | C-C-C-C-CC | 6 | Aguilar,M.B. et al. (2013) Peptides 41:38-44 | |
XXVI | C-C-C-C-CC-CC | 8 | Bernáldez,J. et al. (2013) Mar Drugs 11:1188-1202 | |
XXXII | C-CC-C-C-C | 6 | Kancherla,A.K. et al. (2015) ACS Chem. Biol. 10:1847-1860 | |
XXIX | CCC-C-CC-C-C | 8 | Bernáldez-Sarabia,J. et al. (2019) Toxins 11:128 | |
XXX | C-C-CCC-C-C-C-CC | 10 | Bernáldez-Sarabia,J. et al. (2019) Toxins 11:128 | |
XXVIII | C-C-C-CC-C-C-C-C-C | 10 | Lu et al. (2017) Peptides, 94, pp.64-70 94:64-70 | |
IV | CC-C-C-C-C | 6 | I-V, II-III, IV-VI | Fainzilber,M. et al. (1995) Biochemistry 34:8649-8656 |
Cystine patterns used to define the cystine frameworks in ConoServer
Superfamily | Frameworks | # precursors | Reference | |
---|---|---|---|---|
A superfamily | I,II,IV,VI/VII,XIV,XXII | 347 | Santos,A.D. et al. (2004) J. Biol. Chem. 279:17596-17606 | |
B1 superfamily | 66 | Puillandre,N. et al. (2012) J. Mol. Evol. 74:297-309 | ||
B2 superfamily | VIII | 25 | Dutertre,S. et al. (2013) Mol. Cell Proteomics 12:312-329 | |
B3 superfamily | XXIV | 1 | Luo,S. et al. (2013) PLoS ONE 8 | |
C superfamily | 8 | Puillandre,N. et al. (2012) J. Mol. Evol. 74:297-309 | ||
D superfamily | IV,XIV,XV,XX,XXIV,XXVIII | 122 | Loughnan,M.L. et al. (2009) Biochemistry 48:3717-3729 | |
Divergent M---L-LTVA | IX,VI/VII,XIV | 11 | ||
Divergent MKFPLLFISL | VI/VII | 1 | ||
Divergent MKLCVVIVLL | XIV | 3 | ||
Divergent MKLLLTLLLG | VIII | 2 | ||
Divergent MKVAVVLLVS | XIV | 1 | ||
Divergent MRCLSIFVLL | XVI | 2 | ||
Divergent MRFLHFLIVA | VI/VII | 1 | ||
Divergent MRFYIGLMAA | I,V | 3 | ||
Divergent MSKLVILAVL | IX | 1 | ||
Divergent MSTLGMTLL- | IX,XIX,XV,XXII | 9 | ||
Divergent MTAKATLLVL | XIV | 1 | ||
Divergent MTFLLLLVSV | IX | 1 | ||
Divergent MTLTFLLVVA | VI/VII | 1 | ||
E superfamily | XXII | 9 | Dutertre,S. et al. (2013) Mol. Cell Proteomics 12:312-329 | |
F superfamily | 18 | Dutertre,S. et al. (2013) Mol. Cell Proteomics 12:312-329 | ||
G superfamily | XIII | 1 | Aguilar,M.B. et al. (2013) Peptides 41:17-20 | |
G2 superfamily | IX,XXVII | 20 | Jin et al. (2017) Angewandte Chemie International Edition 56:14973-14976 | |
H superfamily | VI/VII | 21 | Dutertre,S. et al. (2013) Mol. Cell Proteomics 12:312-329 | |
I1 superfamily | VI/VII,XI,XXII | 33 | Jimenez,E.C. et al. (2003) J. Neurochem. 85:610-621 | |
I2 superfamily | VI/VII,XI,XII,XIII,XIV | 85 | Buczek,O. et al. (2005) FEBS J. 272:4178-4188 | |
I3 superfamily | VI/VII,XI | 16 | Yuan,D.D. et al. (2009) Peptides 30:861-865 | |
Insulin superfamily | 34 | Ahorukomeye et al. (2019) eLife 8 | ||
J superfamily | XIV | 47 | Imperial,J.S. et al. (2006) Biochemistry 45:8331-8340 | |
K superfamily | XXIII | 6 | Ye,M. et al. (2012) J Biol Chem 287:14973-14983 | |
L superfamily | XIV,XXIV | 28 | Peng,C. et al. (2006) Peptides 27:2174-2181 | |
M superfamily | I,II,III,IV,IX,VI/VII,XIV,XVI,XXXII | 650 | Corpuz,G.P. et al. (2005) Biochemistry 44:8176-8186 | |
N superfamily | XV | 5 | Dutertre,S. et al. (2013) Mol. Cell Proteomics 12:312-329 | |
O1 superfamily | I,IX,VI/VII,XII,XIV,XVI,XXIX | 709 | McIntosh,J.M. et al. (1995) J. Biol. Chem. 270:16796-16802 | |
O2 superfamily | I,VI/VII,XII,XIV,XV,XVI | 192 | Zhangsun et al. (2006) Chem Biol Drug Des. 68:256-265 | |
O3 superfamily | VI/VII,XVI | 61 | Zhangsun et al. (2006) Chem Biol Drug Des. 68:256-265 | |
P superfamily | IX,XIV | 22 | Lirazan,M.B. et al. (2000) Biochemistry 39:1583-1588 | |
Q superfamily | VI/VII,XVI | 23 | Lu,A. et al. (2014) Mol. Cell Proteomics 13:105-118 | |
R superfamily | XIV | 8 | ||
S superfamily | VIII,XXXIII | 33 | Liu,L. et al. (2008) Toxicon 51:1331-1337 | |
T superfamily | I,V,X,XVI | 280 | Walker,C.S. et al. (1999) J. Biol. Chem. 274:30664-30671 | |
U superfamily | VI/VII | 9 | Robinson,S.D. and Norton,R.S. (2014) Mar Drugs 12:6058-6101 | |
V superfamily | XV | 2 | Peng,C. et al. (2008) Peptides 29:985-991 | |
Y superfamily | VI/VII,XVII | 4 | Yuan,D.D. et al. (2008) Peptides 29:1521-1525 | |
conodipine superfamily | 5 | Möller et al. (2019) Molecular & Cellular Proteomics 18:876-891 |
Superfamlies definition and framework usage in ConoServer.
Family | Definition | Representative toxin(s) | Reference | |
---|---|---|---|---|
alpha conotoxin | Nicotinic acetylcholine receptors (nAChR) | GI | Gray,W.R. et al. (1981) J. Biol. Chem. 256:4734-4740 | |
chi conotoxin | Neuronal noradrenaline transporter | MrIA, CMrVIA | Sharpe,I.A. et al. (2001) Nat. Neurosci. 4:902-907 | |
delta conotoxin | Voltage-gated Na channels (agonist, delay inactivation) | TxVIA | Fainzilber,M. et al. (1991) Eur. J. Biochem. 202:589-595 | |
epsilon conotoxin | Presynaptic Ca channels or G protein-coupled presynaptic receptors | TxVA | Rigby,A.C. et al. (1999) Proc. Natl. Acad. Sci. U.S.A. 96:5758-5763 | |
gamma conotoxin | Neuronal pacemaker cation currents (inward cation current) | PnVIIA, TxVIIA | Fainzilber,M. et al. (1998) Biochemistry 37:1470-1477 | |
iota conotoxin | Voltage-gated Na channels (agonist, no delayed inactivation) | RXIA | Buczek,O. et al. (2007) Biochemistry 46:9929-9940 | |
kappa conotoxin | Voltage-gated K channels (blocker) | PVIIA | Terlau,H. et al. (1996) Nature 381:148-151 | |
mu conotoxin | Voltage-gated Na channels (antagonist, blocker) | GIIIA | Cruz,L.J. et al. (1985) J. Biol. Chem. 260:9280-9288 | |
omega conotoxin | Voltage-gated Ca channels (blocker) | GVIA | Kerr,L.M. and Yoshikami,D. (1984) Nature 308:282-284 | |
rho conotoxin | Alpha1-adrenoceptors (GPCR) | TIA | Sharpe,I.A. et al. (2001) Nat. Neurosci. 4:902-907 | |
sigma conotoxin | Serotonin-gated ion channels 5-HT3 | GVIIIA | England,L.J. et al. (1998) Science 281:575-578 | |
tau conotoxin | Somatostatin receptor | CnVA | Petrel,C. et al. (2013) Biochem. Pharmacol. |
Pharmacological definition used in ConoServer.
ConoServer is managed at the Institute of Molecular Bioscience IMB, Brisbane, Australia.
The database and computational tools found on this website may be used for academic research only, provided that it is referred to ConoServer, the database of conotoxins (http://www.conoserver.org) and the above reference is cited. For any other use please contact David Craik (d.craik@imb.uq.edu.au).
Contacts:
David Craik
Quentin Kaas
Last updated: Tuesday 30 May 2023